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with the Method of Least Squares 

By G. Dahlquist, B. Sj6berg and P. Svensson 

Abstract. It is shown that the computationally simple method of averages can 
yield a surprisingly good solution of an overdetermined system of linear equations, 
provided that the grouping of the equations is done in an appropriate way. The 
notion of angle between linear subspaces is applied in a general comparison of this 
method and the method of least squares. The optimal application of the method 
is treated for the test problem of fitting a polynomial of degree less than six. 

1. Introduction. Consider the overdetermined set of linear equations 

(1.1) Fx z 

where z E En, x E Em, n > m and F is a n X m matrix, whose columns are as- 
sumed to be linearly independent. 

Several methods have been proposed to obtain a "solution" of such systems 
with less computation than that involved in the method of least squares. As an 
example, we mention Cauchy's method, described by Linnik [6, p. 345]. Guest [1] 
also uses some methods for reducing least-squares problems. 

As early as in the eighteenth century overdetermined systems of equations were 
treated by a method, later known as the method of averages (MA). (Whittaker and 
Robinson [12, p. 258] refer to Tobias Mayer, who described it in 1748.) 

This method means that the equations are separated into m groups and after 
that, group-wise summed. Hence the overdetermined set of equations is replaced by 
the system 

(1.2) GTFy = GTz 

where GT is an m X n matrix of the form 

1 1 *r I 0 0 ... 0 ... ... O ... 
O O ... 0 I I ... I ... .. o u 0 

(1.3) GT= . 

The matrix G will be called a summation matrix, which is supposed to be chosen 
such that GTF is nonsingular. 

In geometrical terms, (1.2) means that in MA the error vector Fy - z is made 
orthogonal to the m-dimensional subspace G spanned by the columns of G, while 
in the method of least squares (MLS) the error vector is made orthogonal to the 
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m-dimensional subspace F, spanned by the columns of F, by solving the normal 
equations 

(1.4) FTFx = FTz 

In the following x and y will always denote the linear vector functions of z, which 
are defined by (1.4) and (1.2), respectively. 

MA is attractive because of the simple arithmetic involved in the reduction to 
the m X m set of equations. In fact, (1.2) is obtained by n(m + 1) additions, 
while (1.4) requires 'm(m + 3)n multiplications and about the same number of 
additions. 

We shall now study how to choose G in order that the application of MA should 
give as good results as possible. First we need a measure of the goodness of the 
result obtained by MA and a method for computing this measure. The choice of 
measure depends on the nature of the errors in the overdetermined set of equations. 
We shall consider two measures, associated with the following problems: Let x 
and y be defined by (1.4) and (1.2), respectively, and let I be the Euclidean 
vector norm. 

Problem 1. Determine, for a given summation matrix G, 

X = inf (IIz -Fx2/11lz - Fy 12) (z E En) 

X will be called the characteristic ratio. Then determine how to choose G so as to 
get X as large as possible. 

Note that 0 < X < 1, following directly from the definition of MLS. This 
measure seems to be adequate when "systematic" errors are dominant, i.e., when 
a vector z X F is given exactly and we want to obtain a simplified, approximate 
representation of z by a vector in F, e.g., when a complicated analytic function is 
to be approximately represented by a polynomial. 

Theorems 1 and 2 (see Section 2) indicate a general method for the calculation 
of 7, formulated as an eigenvalue problem for a symmetric m X m matrix, m ? n. 
The optimal choice of G will be treated in Section 3 for the test problem of poly- 
nomial approximation, i.e., we shall determine numerically the "best" summation 
matrix under certain simplifying conditions. Numerical results are given for poly- 
niomial degree not exceeding five. Our results generalize those of Morduchow [7], 
and Morduchow & Levin [8] for polynomials of first and second degree respectively. 
The latter paper was the starting point of the present investigations. 

When the errors are of a statistical nature, a different measure of goodness is 
adequate. The following formulation covers a common situation. 

Problem 2. Let z C En be a random vector, such that E(z) E F, say E(z)-Ft 
where E& Em. Let the covariance matrix be E((z - Fi)(z - Ft)T) = o.2f, where 
o- is a scalar constant and I the n X n unit matrix. 

For a given summation matrix G, determine 

'= E(IjFx - Ftj2)/E(QFy - FtJ 2) 
n n 

-= E((Fx -F) F)2)/ E ((Fy-FA) i2) 

' will be called the efficiency. As in Problem 1, then determine G so as to get 7' 
as large as possible. 
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Note that 0 ? 7' < 1, a consequence of the Gauss-Markoff theorem [10, p. 
560], according to which the least-squares estimate is a minimum-variance estimate 
for any linear function of t. Hence, in particular, each component of Fx is a mini- 
mum-variance estimate of the corresponding component of Ft. In view of this, 7' 
indicates that proportion of the observations, which is utilized efficiently when 
MA is applied. 

In Theorem 3, 7' is expressed as a function of the eigenvalues for the same matrix 
that appears in Problem 1. Therefore, the same general approach can be used to 
solve both problems, but we have not yet carried through the computations for 
7'. According to Theorem 4, however, -' > 7. 

2. General Results. 
2.1. Geometrical analysis of Problem 1. Problem 1 can be treated either by using 

formal matrix algebra or by the application of the notion of an angle (gap) between 
two linear subspaces of a Euclidean space. We prefer the latter approach, since we 
believe that this natural but neglected notion can be useful in other problems of 
numerical analysis. This belief is confirmed by the fact that Varah [11], independent 
of our work, recently used it in a different context. Closely related concepts have 
been used in functional analysis, see e.g. [5, p. 197]. 

At first, we look at the case n = 3, m = 2. Here F and G are planes in E3. By 
(1.2) and (1.4), z - Fx and z - Fy are perpendicular to F and G respectively, 
which means that the angle between the two vectors equals the angle between F 
and G, which we denote [F, G]. Therefore, 

jlz - FxI/llz - Fyjj = cos [F, G] 

Next we take n = 3, m = 1. Here the geometrical interpretation shows that the 
minimum value of |z - FxIl/lIz - Fyll, z E E3, is cos [F, G]. See also Fig. 1. 

z 

z - /Ptr 

FIGURE 1 

Now we look at the general case. Let F and G be linear subspaces of En, and 
let A and B be two rectangular matrices, whose columns form orthonormal bases 
for F and G respectively, i.e. ATA - I, BTB = I. The orthogonal complements 
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of F and G are denoted by F' and G' respectively. In our application F and G are 
of equal dimension, but this restriction is not necessary in this section. 

The matrices 

PF=AAT, PF'=I-AAT, PG=BBT, PGP=I-BBT 

are orthogonal projections, [2, p. 8], for the spaces F, F', G and G' respectively. 
The projections satisfy the relations 

(2.1) p2 = p pT = p 

Definition. 

cos [F, G] = min IIPGfJl/lfII f 0< [F, G] < ir/2. 
f EF 

Comment. This definition is consistent with the ordinary definition of angle 
between subspaces of E2 and El, if and only if the dimension of F is less than or 
equal to the dimension of G. Cf. Lemma 2, below. 

We shall now prove the following theorems. 
THEOREM 1. X = cos2 [F, G]. 
THEOREM 2. cos2 [F, G] is equal to the smallest eigenvalue of the matrix ATBBTA. 
Since f = Ap, p E Em: Ilfj12 = pTATAp = pTp = jIpIj2 and we have, since 

BTB = I, 

(2.2) cos [F, G] = min IIPGApI12 = min pTATBBT_P. 
IIpII=1 IIpII=1 

Theorem 2 follows directly from this. Hence, 

sin2 [F, G] = 1-cos2 [F, G] = max PT(I- ATBBTA)p. 
'IpII=1 

We denote the spectral radius of a matrix M by p(M), cf. [2, p. 3]. Since A TA = I 
we have 

(2.3) sin2 [F, G] = max pTAT(I - BBT)Ap = p(ATPG,A). 
IIpII=1 

We now need the following well-known and useful result, cf. [13, p. 54]. 
LEMMA 1. Let U be a m X n matrix, let V be a n X m matrix, n > mi. Then 

the eigenvalues of UV are eigenvalues of VU as well. In particular, UV and VU have 
equal spectral radius, and the nonzero eigenvalues have equal multiplicity in UV and 
vU. 

If n > m, then the latter matrix has n - m additional eigenvalues, equal to zero. 
The application of Lemma 1 to (2.3) yields the equation 

(2.4) sin2 [F, G] = p(AATPG') = P(PFPG') 

LEMMA 2. If F and G have equal dimension, then [F, G] = [G, F]. If F has lower 
dimension than G, then [F, G] _ [G, F] = 7r/2. 

Proof. Put U = ATB, V = BTA. By Theorem 2, COS2 [F, G] and COS2 [G, F] 
are equal to the smallest eigenvalues of UV and VU respectively. The dimension 
of F is equal to the number of rows in UV, while the dimension of G is equal to the 
number of columns in VU. The statement then follows from Lemma 1. 

LEMMA 3. [G', F'] = [F, G]. 
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Comment. The reader is advised to interpret this result in the three-dimensional 
case. 

Proof. Substitute in (2.4) G' for F and F' for G. Then apply Lemma 1 and (2.4) 
again: 

sin2 [G', F'] = P(PG'PF) = P(PFPG') = sin [F, G] . 

We are now in a position to prove Theorem 1. We first remark that the vector Fx 
defined by (1.4) is equal to PFZ, according to the theory of MLS, [2, p. 8]. Further- 
more, PF,Fy = 0 since Fy & F. 

Hence, 

PF'(z - Fy) = PF'Z = (I - PF)Z = z - Fx. 

lJz - FxII/lIz - FyII = IIPF,(Z- Fy)Il/I1z - FyJJ . 

By (1.2), z- Fy E G' for any z E En. Conversely, any vector v E G' can be ex- 
pressed in the form v =z - Fy. For if z = v then, by (1.2), y = 0, and hence 
z - Fy = v. Hence, 

= inf Ilz - FX112/11z - Fyj12 (Z E En) 
z 

= inf IIPF'VII2/11VII2 (v E G') 
v 

= cos2 [G', F'] = COS2 [F, G] . 

Theorem 1 is thus proved. 
2.2. Algebraic analysis of Problem 2. Again, let the columns of A and B form 

orthonormal bases of the spaces F and G respectively, which are now assumed to 
be of equal dimension m. Introduce the vectors x, 'y, defined by Ax = Fx, Ay = Fy, 
At = Ft. Then (1.4) and (1.2) are equivalent to x = ATz and BTA A = BTz, re- 
spectively. In the introduction we assumed that GTF is nonsingular. This implies 
that BTA is nonsingular, and hence y = (BTA)-IBTz. 

THEOREM 3. ' = m/ L$=i N -1, where \i are the eigenvalues of A TBBTA. 
Proof. By definition, 

- E(IJAy - At112)/E(IAA - A l12). 

We shall denote the trace of a matrix M by tr M. 

E(lIAy - AAl12) = E(|I| - -j12) = tr E((y 
A 

A)Q8 - t)T) 

Since y- = (BTA)-jBTz- = (BTA)-'BT(z -At), we obtain 

E(IIAy- A-l2) = tr (BTA>'BT.E((z - A() (z - At)T) B(ATB)-' 

= tr (BTA)-BTT2IB(ATB)-> 
m 

= -2 tr (ATBBTA)-l = _2 

i=l 

where Xi are the eigenvalues of the positive definite matrix ATBBTA (see Remark 
I, below). 

Similarly, or simply by putting B equal to A, since x = ATAX' = ATz, 
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E( IIAx- AtI2) = o.2 tr(ATAATA)-1 = cr2m 

Hence, 
m 

(2.5) X /EA- 
==1 

Theorem 3 is thus proved. 
THEOREM 4. q' > X/(1- (1-X) dim (F n G)/m) ? q. Here the same summa- 

tion matrix is assumed for X and r'. 

Proof. We note that f E F X AATf = f, f E G =X BBTf = f. Hence, 
f E F n G =m AATBBTf = AATf = f, i.e. F n G is a (possibly empty) space of 
eigenvectors of AATBBT belonging to the eigenvalue 1. In any case, the multi- 
plicity of this eigenvalue is at least equal to dim (F n G). By Lemma 1 the same 
conclusion holds for the matrix BTAATB. By Theorem 1, the remaining Xi are not 
less than q. By Theorem 3, 

m _ ~~~~~~~~~~~~~~~~1 
m = E qi- < dim (F n G) .1 + (m - dim (F n G)) , 

valid also when F n G = 4. Theorem 4 follows immediately from this inequality. 
Remark 1. In the proofs of Theorems 1-4, no use is made of the special form of 

the matrix G. They therefore hold for an arbitrary matrix G, such that GTF is 
nonsingular, and so their application is not restricted to MA. It should also be 
noted that V' -> 0, X --> 0 when GTF tends to a singular matrix. The assumption 
of nonsingularity therefore means no restriction in the search for the summation 
matrices which maximize X or q'. If G7F is singular for all summation matrices, 
e.g., if all the column sums of F are equal to zero, then MA has to be modified, 
e.g., by reversing the signs in some of the rows of F. 

Remark 2. The inequality q' < 1, which was mentioned in the introduction as 
a consequence of the Gauss-Markoff theorem follows easily from (2.5), since 

0 < Xi < JIFTGGTFIl < JIFTJf . JIGTJJ . JFFII _ 1, 

for all i. 
Remark 3. The first three theorems can be summarized in the form 

=11 (GTF)- 1122, i/n -11 (GTF) 1IF2/m. 

Here we denote the Frobenius norm of a matrix by 11 |IF. 

The inequality ' > X of Theorem 4 then follows from the well-known inequality 

11 |IF2 =< m|| * 1122 

3. An Application: Polynomial Fitting to Equidistant Data. 
3.1. Formulation of the problem. A function f(x) is known at n equidistant points, 

(3.1) xk= -1+2k/(n-1), 0<k?n-1. 

We call this set of points a grid. This function is to be approximated by a poly- 
nomial P(x) of degree m - 1, 

m-1 

P(x)= E rjxj, m<n. 
j=O 

Put 



COMPARISON OF THE METHOD OF AVERAGES 839 

Z = (f(xo), f(xI), ** *, f(Xn-1)) 

y = (ro, r, *... rm_l) T 

rn-1 

X: '...X 
(3.2) F= I 

_L1 Xn-I *.*.* Xn-1 

from which we get 

(3.3) z-Fy = e, 

where e is an error vector. 
In order to obtain the MA approximation, we multiply the left-hand side of 

this equation by a matrix GT of the form already mentioned in the introduction, 
cf. formulae (1.2), (1.3). Then we solve for y the matrix equation 

(3.4) GT(Fy-z) = O. 

The summation matrix G = (gaj), i = O, 1, * , n- 1; j = O, 1, ***,m-1, 
corresponds to a grouping of the equations, i.e., to a certain subdivision of the point 
set {Xk}. 

According to Theorems 1 and 2, Problem 1 is therefore to calculate the angle 
between the space F of polynomials of degree m - 1 and the space G of step 
functions (with m - 1 discontinuities defined by the summation matrix G), and 
to allocate the discontinuities on the grid in order to make this angle as small as 
possible. An application of Rolle's theorem shows that the constants are the only 
functions which belong to both F and G, provided that n ? 2m - 1. Hence 

(3.5) dim (F n G) = 1 

if n > 2m - 1. 
We now proceed to define the orthonormal bases for F and G. Let { aj(x) } , 

be the set of polynomials, which are mutually orthonormal under summation over 
Xk }7ij". These polynomials were investigated by Chebyshev, Gram and Ch. 

Jordan [3], [4]. Let A = (akJ),where akj = aj(xk), 0 _ j < m-1, 0 < k < n-1. 
The columns of A span the same subspace F as the columns of F. 

We now introduce the assumption that the subdivision of the grid is symmetric, 
i.e. that the number of l's is the same in the jth row of GT as in the (m - 1 - j)th 
row. 

We shall determine the symmetric subdivision which yields the maximum 
characteristic ratio. We believe that no asymmetric subdivision is more efficient, 
although we have not proved this. We also believe that the characteristic ratio 
cannot be increased by permitting "nested" groups of equations, i.e., groups ob- 
tained by adding equations which do not arise from adjacent points of the grid. 

Having made the assumption of symmetry, it is advantageous to replace G by 
a matrix B, whose columns span the same space as the columns of G and have 
parity properties similar to those of the orthogonal polynomials which occur in the 
columns of A. 
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Let go, gl, ..., gm-i be the columns of G and let bo, bi, , bmr1 be the columns 
of B. We then define 

bmr2s1 = [(-1)m+l1g. + gm-,,l]/I(- 1)m+1.g5 + gm-s-ill 

(3.6) bm_2s_2 = [(-l)mgs + gm-s-1]/11(-1)mfigs + gm-s-ill 

S,= 0, 1, ..., [(m -1)/2] . 

Because of the symmetry properties, bi is orthogonal to a3 if i - j is odd. Hence 
BTA has a checkerboard structure, where the nonzero elements are of the form 

qj 

di Zai xk). 
k=pj 

An explicit formula for sums of this type will be derived in the next section. The 
calculation of the eigenvalues of ATBBTA is simplified because this matrix has a 
similar checkerboard structure, and therefore breaks down into two matrices, both 
of order m/2 if m is even, and of order (m + 1)/2 and (m - 1)/2 if m is odd. 

3.2. A summation formula for the polynomials aj(x). In order to compute 
Ek.p aj(Xk) we define a function F(x) satisfying the relation (step-length 

h = 2/(n - 1)): 

(3.7) AF(x) F(x + h) - F(x) = aj(x). 

Then 

q 

(3.8) , aj(Xk) = F(xq + h) - F(xp) 
k=pv 

Jordan [3, p. 445] gives the following recurrence relation: 

aj(x) = rj.x.aj14(x) -sj aj_2(X) 

(3.9) n-1 (4j21 \1/2 

where rj = . 'n2_j2J , sj= rjlrj-l . 

Initial values: ao = n 1/2, al = (3(n + 1) 1x/ \ n(n + 1)2 

According to Jordan [4, p. 315], we have for the chosen grid and with slight 
modifications (the operator A means differencing with respect to x): 

(3.10) cj(j + 1) ,aj+i = 2h(x + h) Aaj + jh2Aai + 2h2(j + 1)aj. 

But (x + h) Aaj = A(xaj) - haj, therefore 

2jh2aj = A[(j + l)cj aj+i - h(2x + jh)aj] . 

_F = + 1 
cj aj+l- 2x +h a + C, 

where cj = J _+i, 072 h4j(2j) (n + i 

Jordan [3, p. 445] gives 
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j + = 2j + 1 2j + jfh f n-2 _ 1/'2 

2h c1a3"1j+1 xa3 j +1 2 1 4j_121a , 

2j + 1 2j + { n 2 j2 1/2 r 
(3. 11) F..va - 42 lf aj1- ~-~+ -aj+ C 

2h(j + 1) [2X-jh -h)aj h{ (2jj+2j)(nl i2)}1/2 a2] + C 

We have used the formulae (3.8), (3.9) and (3.1 1) to calculate the elements of BTA. 
3.3. The limit case with infinitely many observations. When n -* oo the poly- 

nomials / n aj will approach the Legendre polynomials Pj normalized so that 

2 PiPjdx = Sij. 

The step functions bj will now be defined on the interval [-1, 1] so that 

2 | bibjdx = ij . 

Essentially the bj's are chosen as before. 
If we put aj = (A/h) (h.F) and let h -> 0 in (3.11), then aj(x) tends to the 

normalized Legendre polynomial, and we obtain a well-known formula: 

(3.12) 
aj(+)d 1 (x aj(x) - 

2j ) 12 aai(x)) 
+ C 

which has been used analogously to (3.11) when computing the scalar products 

1(1 
(ai, bj) = 2 J aibjdx . 

3.4. A simple example of the n-calculation. Let m = 2 and n be even; then B is 
determined by the symmetry conditions: 

bio = I/ -/n , bji = sgn (j -n/2)/ a/ n, j = , 1, * ,n n- 1 

According to formula (3.8) we have 

ATB[0 2 ? F(? + h)-F(1)] 

where F(x) is given by formula (3.11). 

F(x) = 2I2h [(2x - 2h)a1(x) - h(3(n,2 _ 1)) 1/2ao (x)] 

2h) 1/2 
1/ 

= 4h (2x -2h)3(n?1)) x-h.(3(n2 _ 1))1/2/Vn/] 

1 (3(n -1) )1/2 

(nn?1) ) * .[2(x-h)x-h(n + 1)] . 

Finally we get 
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ATBBTA= 0]? 
L 3/(4(1 - 1/n 2))] 

whereof 

(3.13) = 3/(4 - 4n-2), ' = 
6/(7 - 4n-2) 

lim7= 0.75, lim7' = 0.86. 

TABLE 1 

Characteristic ratios of MA with optimal grouping 
(degree of polynomial = m - 1). See also Section 3.4. 

m 3 m = 4 m = 5 m - 6 

n P 7 P 21 P Q P Q 

4 1 .900 
5 1 .800 1 .667 
6 1 .714 1 .893 1 1 .794 
7 2 .694 1 .789 1 1 .595 1 1 .667 
8 2 .763 1 .778 1 2 .742 1 1 .742 

10 2 .776 1 .682 1 2 .654 1 2 .595 
15 3 .771 2 .750 1 4 .666 1 3 .632 
20 4 .769 3 .695 2 5 .690 1 4 .691 
50 10 .768 6 .708 4 14 .683 3 10 .643 

1000 200 .768 130 .728 82 270 .698 57 195 .670 

n a r1 a 1 a b 1 a b X 

00 .200 .768 .130 .729 .082 .270 .699 .058 .194 .670 

TABLE 2 

Characteristic ratios of MA with almost equal grouping. 

m=3 m=4 m=5 m=6 

n P rl P rl P Q 21 P Q X 

4 1 .900 
5 2 .357 1 .667 
6 2 .571 2 .143 1 1 .794 
7 2 .694 2 .208 1 1 .595 1 1 .667 
8 3 .397 2 .384 2 1 .136 1 1 .742 

10 3 .618 3 .185 2 2 .238 2 2 .022 
20 7 .449 5 .314 4 4 .184 3 3 .194 
50 17 .475 13 .272 10 10 .172 8 8 .117 

n a 27 a 27 a b 2| a b s 

00 .333 .493 .250 .304 .200 .200 .170 .167 .167 .086 
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3.5. Numerical calculation of characteristic ratios. The construction of the sym- 
metric subdivision of the grid, which gives as large characteristic ratio as possible, 
is a maximization problem for a function of [(m - 1)/2] variables, which has been 
solved on a computer for m < 6. A search technique was used. Details are given 
in [9]. See Table 1. 

For comparison we have also computed the characteristic ratios obtained when 
the groups are made equally or almost equally large. It is obvious from Table 2 
that the characteristic ratio is much lower than for optimal subdivision, especially 
when the polynomial's degree is high. 

AAA * 
AfL4 

/2 

~ 0 

a 6i'< 

/0 20 5n 30 S? 

_2 3- 

/0 20 5 0 0 50 

FIGURE 2. f(x) = 1/(2 + x), m = 4. 

The results of these test calculations show that MA can be very efficient if it 
is used in an appropriate way, and that it is profitable to spend some thought on 
the question how to group the equations. 

We do not advocate the application of MA for polyinomial approximation. The 
fact that the efficiency can be as high as it is in this test example indicates that 
MA deserves to be considered as a method for data reduction, in particular when 
small computers without built-in multiplication are used. 

The parameters in the tables are: 
m = the number of unknown coefficients in the polynomial (= degree + 1). 
n = the number of observations (= the number of original equations). 

P = the number of observations in the first group (and the last because the 
grouping is symmetric). 



844 G. DAHLQUIST, B. SJOBERG AND P. SVENSSON 

Q = the number of observations in the second group. 
= the characteristic ratio as defined in the introduction. 
When n is odd and m is even, the equation corresponding to the origin is added 

with weight 1/2 to each of the two groups arising from the points adjacent to the 
origin. 

IIA 

/2 

16, Ae .31 $. /0 

Q+4, 

/7 4' .6e 

FiGUR, 3. f(x) R(-0.1, 0.1), m = 4. 

In the continuous case, 

a =lim P(n)/n, b = lImnQ(n)/n. 

For example, when m= 6, n = co, the points of variation of the step functions 
bj(x) are - 1 + 2a, - 1 + 2(a + b), 0, 1 - 2(a + b), 1 - 2a. Note that P(n) 
and Q(n) are always close to na and nb, respectively. The optimal subdivision for 
the case n = oo therefore indicates a good subdivision even for small values of n. 

The efficiency 77' has been computed in one case. For m = 3, n = oo we found 
'7 ma1x 0.838 for a = 0.22. This should be compared to the bound given by The- 
orem 4, '7 /max > 0.832, using the values a = 0.2 and q=0.768 from Table 1. 

It is believed that the errors in the values of a, b, 77 do not exceed 0.001. 
3.6. A numerical experiment. In order to illustrate the two aspects discussed in 

the introduction, we have fitted polynomials of degree 3 to 
(1) the function f(x) = 17 (2 + x), 
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(2) sets of random numbers, uniformly distributed on (-0.1, 0.1). In both 
cases, we used the grids {Xk = -1 + 2k/(n - 1); k = 0, 1, *, n - 1} for 
n = 5, 10, 15, 20, 50. Each fit was made with three different methods, namely 
MA with optimal grouping, MLS and Chebyshev approximation (MCH). The re- 
sults are measured in both Euclidean and maximum norm on the grid. See Figs. 2, 3. 
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